161 | 0 | 5 |
下载次数 | 被引频次 | 阅读次数 |
针对组网雷达的多干扰机协同干扰,在解决多目标组合优化问题的前提下,为解决分配资源规模过大,算法容易产生局部收敛的问题,提出一种基于新的个体更新方式的鲸鱼优化算法(WOA)。个体之间编码通过字符交叉与优化目标对比的方式产生,防止传统编译码更新过程中由于编译规则不充分而出现问题,保留原编码中关键字符,增强原算法的寻优能力。通过鲸鱼群中的最优个体与最劣个体来决定鲸鱼优化算法中的更新次数,保证算法在一定程度上有跳出局部收敛的能力,提升种群的多样性,从而进一步提高算法的寻优能力。仿真结果表明,和其他群智能算法相比,改进的鲸鱼群优化算法(IWOA)收敛稳定性更高,全局寻优能力更出色,能够解决多目标组合优化问题。
Abstract:For the cooperative jamming of multiple jammers to networked radar system, under the premise of solving multi-objective combinatorial optimization problem, to solve the issue that excessively large resource allocation scales often leads to local convergence issues, a new individual updating method based whale optimization algorithm(WOA) is proposed.The encoding between individuals is generated through character crossing and comparison with optimization objectives, which prevents the issues that may arise during the traditional encoding update process due to insufficient compilation rules, while the key characters in the original encoding are retained to enhance the optimization capability of the original algorithm.The number of updates within the whale optimization algorithm is determined by the best and worst individuals in the whale pod, which ensures the algorithm has the ability to escape local convergence to a certain extent and enhances the diversity of the population, thereby the algorithm's optimization capability is further improved.Simulation results show that, compared with other swarm intelligence algorithms in recent years, the improved whale optimization algorithm(IWOA) has higher convergence stability and superior global optimization capability, and it can solve multi-objective combination optimization problems.
[1] 王沙飞,鲍雁飞,李岩.认知电子战体系结构与技术[J].中国科学:信息科学,2018,48(12):1603-1613,1709.
[2] 苏周,韩俊,刘飞,等.美军认知电子战发展特点和趋势研究[J].中国电子科学研究院学报,2022,17(11):1057-1064.
[3] 黄知涛,王翔,赵雨睿.认知电子战综述[J].国防科技大学学报,2023,45(5):1-11.
[4] 王铁红,李莹.地面防空对抗系统干扰资源优化分配研究[J].中国电子科学研究院学报,2008(5):441-445.
[5] 邓杨蓉,李文光,葛佳昊,等.多无人机协同搜索及干扰算法研究[J].战术导弹技术,2023(5):10-18,113.
[6] 石荣,刘江.干扰资源分配问题的智能优化应用研究综述[J].电光与控制,2019,26(10):54-61.
[7] 王书剑,李惠东.改进灰狼算法在干扰资源分配中的应用[J].应用科技,2021,48(2):54-57,99.
[8] 王青云,焦德忠,史铄,等.改进的蚁群干扰资源分配方法[J].系统仿真学报,2021,33(12):2967-2974.
[9] 郝万兵,张军,张昕.基于改进遗传算法的干扰资源分配方法研究[J].火控雷达技术,2023,52(2):56-60.
[10] 张养瑞,高梅国,罗皓月,等.基于检测概率的雷达网协同干扰效果评估方法[J].系统工程与电子技术,2015,37(8):1778-1786.
[11] WU Z,LUO Y,et al.Optimal distributed cooperative jamming resource allocation for multi-missile threat scenario[J].TET Radar,Sonar & Navigation,2022,16(1):113-128.
[12] 柳向,李东生,刘庆林.基于OS-CFAR的LFM脉压雷达多假目标干扰分析[J].系统工程与电子技术,2017,39(7):1486-1492.
[13] MA J,LI Y,SONG M.Cooperative Jamming Resource Allocation Based on Integer-Encoded Directed Mutation Artificial Bee Colony Algorithm[C]//2021 IEEE 4th International Conference on Electronic Information and Communication Technology.Xi’an,China:IEEE Press,2021:695-700.
[14] 呙鹏程,王星,周东青,等.基于熵权的灰色关联辐射源威胁评估[J].空军工程大学学报(自然科学版),2016,17(6):58-63.
[15] 薛成,曹戈,王争冕,等.基于鲸鱼群算法的交直流混联系统无功电压控制方法研究[J].电网与清洁能源,2023,39(9):67-73.
[16] 蒋华伟,郭陶,杨震,等.基于离散鲸鱼群算法的物资应急调度研究[J].电子与信息学报,2022,44(4):1484-1494.
[17] 王坚浩,张亮,史超,等.基于混沌搜索策略的鲸鱼优化算法[J].控制与决策,2019,34(9):1893-1900.
[18] 周同乐,陈谋,韩增亮,等.基于改进狼群算法的多无人机协同多目标分配[J].导航定位与授时,2022,9(5):46-55.
[19] 张森悦,隋学梅,李一波.基于自适应樽海鞘算法的多无人机任务分配[J].吉林大学学报(理学版),2022,60(5):1123-1132.
基本信息:
DOI:10.16426/j.cnki.jcdzdk.2024.06.016
中图分类号:TN974;TP18
引用信息:
[1]查力根,黄湘松,潘大鹏.基于改进鲸鱼优化算法的干扰资源分配方法[J].舰船电子对抗,2024,47(06):75-83.DOI:10.16426/j.cnki.jcdzdk.2024.06.016.
基金信息:
航空科学基金项目,项目编号:201801P6003; 中央高校基本科研业务费专项资金资助项目,项目编号:3072022CF0802