nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 04, v.47 50-54
基于SSA+UKF算法的多船舶无源雷达航迹预测研究
基金项目(Foundation):
邮箱(Email):
DOI: 10.16426/j.cnki.jcdzdk.2024.04.008
摘要:

用传统船舶雷达对海上单个快速移动目标、多个移动轨迹目标进行探测、跟踪时,存在发现概率低、预测精度差和跟踪难度大等问题,通过配置多个船舶无源雷达进行实时探测,并对接收信息进行有效融合可以显著提升航迹预测的精度。通过对多船舶无源雷达进行建模,利用樽海鞘群算法(SSA)对多船舶航迹状态进行预测,并在寻优中采用UKF对参数估计过程进行适时干预,降低估计值实为局部最优值的概率。通过仿真实验表明,该算法能够有效完成对海上多个移动目标的航迹预测,且参数估计的精度更高。

Abstract:

There are problems such as low detection probability, poor prediction accuracy and high tracking difficulty while detecting and tracking single rapidly moving target and multiple targets with moving trajectory at sea by using traditional ship radars.The accuracy of trajectory prediction can be significantly improved by configuring multiple passive ship radars for real-time detection and effectively fusing received information.By modeling the multiple passive ship radars, this article uses the salp swarm algorithm(SSA) to predict the trajectory status of multiple ships, and uses unscented Kalman filter(UKF) to perform timely intervention to the factor evaluation course during the optimization process, which reduces the probability that the estimated value is actually the local optimal value.Simulation experiments show that this algorithm can effectively predict the trajectory of multiple moving targets on the sea, and the accuracy of parameter estimation is higher.

参考文献

[1] PERER A L,OLIVEIRA P,SOARES C.Maritime traffic monitoring based on vessel detection,tracking,stateestimation,and trajectory prediction[J].IEEE Transactions on Intelligent Transportation Systems.2012,13(3):1188-1200.

[2] MURRA Y B,PERERA L P.A data-driven approach to vessel trajectory prediction for safe autonomous vesselo perations[C]//Proceeding of the International Conference on Digital Information Management.2018:240-247.

[3] ZHAI P Y,ZHANG Y J,WANG S B.Intelligent ship collision avoidance algorithm based on DDQN with prioritized experience replay under COLREGs[J].Journal of Marine Science and Engineering.2020,10(5):45-46.

[4] 高天航,徐力,靳廉洁,等.考虑航艏向与数据变化差异的船舶轨迹预测[J].交通运输系统工程与信息,2021,21(1):90-94.

[5] 叶文哲.基于机器学习和AIS数据的船舶轨迹预测模型的设计与实现[D].成都:电子科技大学,2022.

[6] 翟宏睿,罗亮,杨萌,等.基于最大熵强化学习的自主船舶航迹跟踪研究[J].舰船科学技术,2023,45(23):78-84.

[7] 赵煜,尤再进,吴丽淑,等.基于GMM与LSTM耦合模型的船舶航迹预测算法[J].上海海事大学学报,2022,43(4):23-29.

[8] 彭颢文.基于EKF实时辨识的船舶航迹跟踪控制[D].大连:大连海事大学,2023.

[9] 王均刚,胡柏青,高端阳,等.基于LSTM-EMD模型的船舶航迹预测方法[J].舰船电子工程,2023,43(7):29-35.

[10] 杨振亚,张智,尚晓兵,等.基于改进多输出支持向量的船舶航迹预测[J].系统工程与电子技术,2024,46(1):173-181.

基本信息:

DOI:10.16426/j.cnki.jcdzdk.2024.04.008

中图分类号:U665.22;U675.74;TN957.51

引用信息:

[1]顾晋晋,张永祥.基于SSA+UKF算法的多船舶无源雷达航迹预测研究[J].舰船电子对抗,2024,47(04):50-54.DOI:10.16426/j.cnki.jcdzdk.2024.04.008.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文