nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg qikanlogo popupnotification paper
2024 04 v.47;No.316 1-7
基于改进MobileV3Net的脉冲雷达干扰识别方法
基金项目(Foundation): 国家自然科学基金,项目编号:62071137
邮箱(Email):
DOI: 10.16426/j.cnki.jcdzdk.2024.04.001
中文作者单位:

哈尔滨工程大学;先进船舶通信与信息技术工信部重点实验室;

摘要(Abstract):

随着现代电子战的飞速发展,基于数字射频存储器转发的新型干扰层出不穷,如何快速有效地识别这类干扰成为现今研究的热点问题。针对于此,提出了一种基于改进MobileV3Net的脉冲雷达干扰识别研究,使用MobileV3Net作为基本网络框架,添加了动态卷积模块和高效通道注意力模块,实现了自动提取特征的小样本下8类干扰的有效识别。仿真结果表明,该网络的训练时间大大减少,且在轻量训练样本下依然能保持95%以上的识别准确率,在-10~10 dB下,平均识别率在99%以上,证明该方法具有更强的鲁棒性,更高的准确度,更好的轻量性。

关键词(KeyWords): 雷达有源干扰;;时频域分析;;卷积神经网络;;动态卷积
参考文献 [1] ELSWPRTH A T.Electronic Warfare[M].New York:Nova Science Publishers Inc.,2009.
[2] 周红平,王子伟,郭忠义.雷达有源干扰识别算法综述[J].数据采集与处理,2022,37(1):1-20.
[3] 王雨鑫.新型雷达干扰识别方法研究[D].哈尔滨:哈尔滨工程大学,2021.
[4] WANG Y,SUN B,WANG N.Recognition of radar active-jamming through convolutional neural networks[J].The Journal of Engineering,2019(21):7695-7697.
[5] LI M,REN Q,WU J.Interference classification and identification of TDCS based on improved convolutional neural network [J].Journal of Physics Conference Series,2020,1651(1):012155.
[6] 郭治锐,鲁军,刘磊,等.基于 AlexNet的雷达干扰识别方法研究[J].电光与控制,2021,28(9):49-53.
[7] 刘国满,聂旭娜.一种基于卷积神经网络的雷达干扰识别算法[J].北京理工大学学报,2021,41(9):990-998.
[8] ZHANG Y B.Technology of smart noise jamming based on multiplication modulation[C]//2011 International Conference on Electric Information and Control Engineering.Wuhan:IEEE Press,2011:1-3.
[9] 黄大通,邢世其,李永祯,等.基于乘积调制的SAR灵巧干扰方法[J].系统工程与电子技术,2021,43(11):3160-3168.
[10] 崔国龙,李乾,刘加换,等.一种SMSP干扰和C&I干扰的检测方法:201510520716.9[P].2015-08-24.
[11] WANG X S,LIU J C,ZHANG W M,et al.Mathematic principles of interrupted-sampling repeater jamming (ISRJ)[J].Science in China(Series F:Information Sciences),2007,50(1):113-123.
[12] LI Y P,YING X,TANG B.SMSP jamming identification based on matched signal transform[C]//2011 International Conference on Computational Problem-Solving (ICCP).Chengdu,China:IEEE Press,2011:182-185.
[13] 赵淑君,农林舒真,黄晓文,等.基于新阈值函数的小波去噪研究[J].科学技术创新,2022(18):34-37.
[14] 郭立民,陈鑫,陈涛.基于AlexNet模型的雷达信号调制类型识别[J].吉林大学学报(工学版),2019,49(3):1000-1008.
[15] KIM W,JUNG W S,CHOI H K.Lightweight driver monitoring system based on multi-task mobilenets[J].Sensors,2019,19(14):3200-3217.
[16] SANDLER M,HOWARD A,ZHU M L,et al.Mobile-netv2:inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,USA:IEEE Press,2018:4510-4520.
[17] LIU T,LUO R,XU L,et al.Spatial channel attention for deep convolutional neural networks[J].Mathematics,2022,10(10):1750.
[18] CHEN Y,DAI X,LIU M,et al.Dynamic convolution:attention over convolution kernels[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,WA,USA:IEEE Press,2020:11030-11039.
[19] HOWARD A,SANDLER M,CHU G,et al.Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Seoul,Korea(South):IEEE,2019:1314-1324.

基本信息:

DOI:10.16426/j.cnki.jcdzdk.2024.04.001

中图分类号:TN974

引用信息:

[1]郭立民,鄂璟仪,黄文青.基于改进MobileV3Net的脉冲雷达干扰识别方法[J].舰船电子对抗,2024,47(04):1-7.DOI:10.16426/j.cnki.jcdzdk.2024.04.001.

基金信息:

国家自然科学基金,项目编号:62071137

检 索 高级检索