nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 04, v.47 1-7
基于改进MobileV3Net的脉冲雷达干扰识别方法
基金项目(Foundation): 国家自然科学基金,项目编号:62071137
邮箱(Email):
DOI: 10.16426/j.cnki.jcdzdk.2024.04.001
摘要:

随着现代电子战的飞速发展,基于数字射频存储器转发的新型干扰层出不穷,如何快速有效地识别这类干扰成为现今研究的热点问题。针对于此,提出了一种基于改进MobileV3Net的脉冲雷达干扰识别研究,使用MobileV3Net作为基本网络框架,添加了动态卷积模块和高效通道注意力模块,实现了自动提取特征的小样本下8类干扰的有效识别。仿真结果表明,该网络的训练时间大大减少,且在轻量训练样本下依然能保持95%以上的识别准确率,在-10~10 dB下,平均识别率在99%以上,证明该方法具有更强的鲁棒性,更高的准确度,更好的轻量性。

Abstract:

With the rapid development of modern electronic warfare, new types of jamming based on digital radio frequency memory forwarding are emerging in an endless stream.How to quickly and effectively identify this kind of jamming has become a hot issue in current research.In view of this, this paper proposes a research into the recognition of pulse radar jamming based on improved MobileV3Net.In the research, MobileV3Net is used as the basic network framework, and a dynamic convolution module and an efficient channel attention module are added, then the effective recognition of eight types of jamming under small samples with automatic extraction features is realized.The simulation results show that the training time of the network is greatly reduced, the recognition accuracy can still maintain more than 95% under lightweight training samples, and the average recognition rate is more than 99% in-10~10 dB,which proves that the method has more robustness, higher accuracy and better lightweight.

参考文献

[1] ELSWPRTH A T.Electronic Warfare[M].New York:Nova Science Publishers Inc.,2009.

[2] 周红平,王子伟,郭忠义.雷达有源干扰识别算法综述[J].数据采集与处理,2022,37(1):1-20.

[3] 王雨鑫.新型雷达干扰识别方法研究[D].哈尔滨:哈尔滨工程大学,2021.

[4] WANG Y,SUN B,WANG N.Recognition of radar active-jamming through convolutional neural networks[J].The Journal of Engineering,2019(21):7695-7697.

[5] LI M,REN Q,WU J.Interference classification and identification of TDCS based on improved convolutional neural network [J].Journal of Physics Conference Series,2020,1651(1):012155.

[6] 郭治锐,鲁军,刘磊,等.基于 AlexNet的雷达干扰识别方法研究[J].电光与控制,2021,28(9):49-53.

[7] 刘国满,聂旭娜.一种基于卷积神经网络的雷达干扰识别算法[J].北京理工大学学报,2021,41(9):990-998.

[8] ZHANG Y B.Technology of smart noise jamming based on multiplication modulation[C]//2011 International Conference on Electric Information and Control Engineering.Wuhan:IEEE Press,2011:1-3.

[9] 黄大通,邢世其,李永祯,等.基于乘积调制的SAR灵巧干扰方法[J].系统工程与电子技术,2021,43(11):3160-3168.

[10] 崔国龙,李乾,刘加换,等.一种SMSP干扰和C&I干扰的检测方法:201510520716.9[P].2015-08-24.

[11] WANG X S,LIU J C,ZHANG W M,et al.Mathematic principles of interrupted-sampling repeater jamming (ISRJ)[J].Science in China(Series F:Information Sciences),2007,50(1):113-123.

[12] LI Y P,YING X,TANG B.SMSP jamming identification based on matched signal transform[C]//2011 International Conference on Computational Problem-Solving (ICCP).Chengdu,China:IEEE Press,2011:182-185.

[13] 赵淑君,农林舒真,黄晓文,等.基于新阈值函数的小波去噪研究[J].科学技术创新,2022(18):34-37.

[14] 郭立民,陈鑫,陈涛.基于AlexNet模型的雷达信号调制类型识别[J].吉林大学学报(工学版),2019,49(3):1000-1008.

[15] KIM W,JUNG W S,CHOI H K.Lightweight driver monitoring system based on multi-task mobilenets[J].Sensors,2019,19(14):3200-3217.

[16] SANDLER M,HOWARD A,ZHU M L,et al.Mobile-netv2:inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,USA:IEEE Press,2018:4510-4520.

[17] LIU T,LUO R,XU L,et al.Spatial channel attention for deep convolutional neural networks[J].Mathematics,2022,10(10):1750.

[18] CHEN Y,DAI X,LIU M,et al.Dynamic convolution:attention over convolution kernels[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,WA,USA:IEEE Press,2020:11030-11039.

[19] HOWARD A,SANDLER M,CHU G,et al.Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Seoul,Korea(South):IEEE,2019:1314-1324.

基本信息:

DOI:10.16426/j.cnki.jcdzdk.2024.04.001

中图分类号:TN974

引用信息:

[1]郭立民,鄂璟仪,黄文青.基于改进MobileV3Net的脉冲雷达干扰识别方法[J].舰船电子对抗,2024,47(04):1-7.DOI:10.16426/j.cnki.jcdzdk.2024.04.001.

基金信息:

国家自然科学基金,项目编号:62071137

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文