9 | 0 | 16 |
下载次数 | 被引频次 | 阅读次数 |
针对陆海空天跨域广泛存在的电磁作战单元要素如何有机组织形成体系化、智能化作战能力的问题,从智能电磁空间作战的概念内涵、体系架构、能力生成机制和基础理论等多个角度进行了探讨。在智能电磁空间作战能力生成机制方面,基于信息论阐述了电磁空间作战信息增量生成能力增量的机制。在智能电磁空间作战能力生成理论方面,提出物理机理和数据共同驱动建立电磁模型体系的理论。最后,定性分析了雷达领域模型的规模,基于提出的电磁模型体系构建理论,给出了雷达领域的大模型典型应用,实现了电磁作战能力效能的提升。
Abstract:Focusing on the issue that organically organizes the electromagnetic combat elements that exist widely across land, sea, air, and space domains to form systematic and intelligent operational capabilities, this paper explores the issue from multiple perspectives, such as the conceptual connotation, system architecture, capability generation mechanism and basic theory of intelligent electromagnetic space operations.For the operation capability generation mechanisms of intelligent electromagnetic space, the mechanism of information increment generating capability increment in electromagnetic space operations based on information theory is elucidated.In terms of operation capability generation theory of intelligent electromagnetic space, it is proposed that the establishment of an electromagnetic model system is driven by physical mechanisms and data jointly.Finally, this paper qualitatively analyzes the scale of models in the radar field, based on the proposed electromagnetic model system construction theory, presents typical applications of large models in the radar field, which realizes an enhancement in the effectiveness of electromagnetic combat capabilities.
[1] BROWN T B,MANN B,RYDER N,et al.Language models are few-shot learners[J].Advances in Neural Information Processing Systems,2020,33(5):1877-1901.
[2] Google Deep Mind.Gemini:A family of highly capable multimodal models[R].London,UK:Google Deep Mind,2023.
[3] 彭进先,桑苗苗,耿丹,等.美军电磁空间作战研究[J].舰船电子对抗,2024,47(3):35-39.
[4] 李晶,乔玉君,徐继伟,等.俄美军电子战能力现状对比分析及启示[J].舰船电子对抗,2025,48(1):1-11,58.
[5] 梅豪,都兴霖,许登荣,等.有人/无人机协同电磁频谱作战问题研究[J].舰船电子对抗,2024,47(1):29-34.
[6] Center for a New American Security.Artificial intelligence and the future of warfare:America′s response to emerging technologies[R].Washington,D.C.:Center for a New American Security ,2018.
[7] U.S.Department of Defense.Electromagnetic warfare and electromagnetic spectrum operations[R].Washington,D.C.:Department of Defense,2019.
[8] Joint Chiefs of Staff.Joint electromagnetic spectrum operations (JP 3-85)[R].Washington,D.C.:U.S.Department of Defense,2020.
[9] U.S.Department of Defense.Electromagnetic spectrum superiority strategy[R].Washington,D.C:U.S.Department of Defense,2020.
[10] U.S.Department of Defense.Establishment of the Electromagnetic spectrum operations center (press release) [EB/OL].[2024-08-16].https://www.defense.gov/XXX.
[11] COVER T M,THOMAS J A.Elements of Information Theory[M].2nd ed.New York:Wiley,2006.
[12] 邢孟道,王彤,李真芳,等.雷达信号处理基础[M].2版.北京:电子工业出版社,2019.
[13] 何友,修建娟,刘瑜,等.雷达数据处理及应用[M].4版.北京:电子工业出版社,2022.
基本信息:
DOI:10.16426/j.cnki.jcdzdk.2025.04.001
中图分类号:E91
引用信息:
[1]周树德,李春霞.面向智能电磁空间作战的电磁模型体系构建方法[J].舰船电子对抗,2025,48(04):1-7+18.DOI:10.16426/j.cnki.jcdzdk.2025.04.001.
基金信息:
知识-数据驱动的雷达辐射源目标感知技术研究,项目编号:U22B2018