24 | 0 | 15 |
下载次数 | 被引频次 | 阅读次数 |
软件化雷达中现场可编程门阵列(FPGA)构件在动态可重构场景下划分成多个核心资源同时部署多个任务时,要兼顾芯片的资源利用率与任务运行时间。针对该问题,首先对需要部署的任务进行拆分,并建立资源利用以及任务运行时间的数学模型;接着,用NSGA-Ⅱ来对问题模型求解;最后,将基于方向的启发式交叉算子(DBHX)和组合变异方法应用于非支配排序后的遗传算法,增强了算法的优化能力。结果表明,优化后的解集的评价指标GD值、IGD均小于优化前。且优化后平均资源利用率提高3.5%,平均任务运行时间均衡度提高27%。通过仿真验证,对比NSGA-Ⅱ算法优化前与优化后的结果,在解集质量上验证了改进算法的有效性,为用户部署提供了科学依据。
Abstract:When field programmable gate array(FPGA) components of software-defined radar are divided into multiple core resources and multiple tasks are deployed at the same time in the dynamic reconfigurable scenario,the resource utilization of the chip and the task execution time should be taken into account.To address this problem,this paper firstly decomposes the tasks deployed and constructs mathematical models for resource allocation and task execution time.Subsequently,NSGA-Ⅱ is used to solve the problem model.Finally,a direction-based heuristic crossover operator(DBHX) and a combined mutation method are applied to the genetic algorithm after non-dominated sorting,which enhances the optimization ability of the algorithm.The results demonstrate that the GD and IGD values of the optimized solution set are significantly reduced compared to those before optimization.Furthermore,the average resource utilization rate increases by 3.5% and the average task execution time balance improves by 27% after optimization.Through simulation verification,the results before and after NSGA-Ⅱ algorithm optimization are compared,and the effectiveness of the improved algorithm is verified in terms of solution set quality,which provides a scientific basis for user deployment.
[1]汤俊,岑宗骏.软件化雷达技术发展思考与展望[J].信号处理,2022,38(10):1999-2008.
[2]陈超,赵海涛,王臻.一种多目标量子算术优化算法探究[J].电力安全技术,2024,26(2):25-31.
[3]田彦明,侯永生,高超.高性能并行计算中节点负载均衡分配算法[J].信息技术与信息化,2024(11):40-43.
[4]徐聪,叶钧超,黄尧,等.基于联合权重超图划分的SNN负载均衡方法[J].计算机应用研究,2023,40(7):2130-2137.
[5]苏玉钊,孙恩昌,杨睿哲,等.面向Kafk共识消息传输的负载均衡算法[J].高技术通讯,2023,33(1):42-49.
[6]CRUZ P,ACHIR N,VIANA C.On the edge of the deployment:A survey on multi-access edge computing[J].ACM Computing Surveys,2022,55(5):1-34.
[7]YANG Z M,JI W,GUO Q,etal.JAVP:Joint-aware video processing with edge-cloud collaboration for DNN inference[C]//Proceedings of the 31st ACM International Conference on Multimedia.ACM,2023:9152-9160.
[8]颜雪松,伍庆华,胡成玉.遗传算法及其应用[M].武汉:中国地质大学出版社,2018.
[9]高媛.非支配排序遗传算法(NSGA)的研究与应用[D].杭州:浙江大学,2006.
[10]黄学文,陈绍芬,周阗玉,等.求解柔性作业车间调度的遗传算法综述[J].计算机集成制造系统,2022,28(2):536-551.
[11]王吉权,程志文,张攀利,等.求解有约束优化问题的实数遗传算法改进研究[J].控制与决策,2019,34(5):938-942.
[12]陈虎,郭园,祝雪萍,等.基于混合交叉算子改进NSGA-Ⅱ算法的董铺一大房郢水库优化调度研究[J].水电能源科学,2025,43(1):197-201.
基本信息:
DOI:10.16426/j.cnki.jcdzdk.2025.02.003
中图分类号:TN791;TN957.51
引用信息:
[1]付林强,徐朝阳,刘一帆.软件化雷达FPGA动态重构场景的部署及优化[J].舰船电子对抗,2025,48(02):14-19.DOI:10.16426/j.cnki.jcdzdk.2025.02.003.
基金信息: