92 | 0 | 22 |
下载次数 | 被引频次 | 阅读次数 |
船舶轨迹预测研究能够帮助提高海上交通效率,保障交通安全。利用长短时记忆(LSTM)模型擅长处理长序列时序数据的特性,采用改进的粒子群优化(PSO)算法,基于PSO-LSTM模型对舰船轨迹进行预测。使用船舶自动识别系统(AIS)数据作为实验数据,在完成实验数据的预处理之后,通过对历史轨迹数据进行分析,预测未来舰船的航行路径。对比分析了LSTM模型和反向传播(BP)神经网络模型之后,PSO-LSTM模型的精度最高,其均方根误差和平均绝对百分比误差均为最小,表明PSO-LSTM模型的精度较高,具有一定的应用价值,能够为舰船交通流管理和航行安全提供一定的决策支持。
Abstract:The research into ship trajectory prediction can help to improve the maritime traffic efficiency and ensure the traffic safety.Utilizing the long short-term memory(LSTM) model's expertise in handling long sequence time series data,this paper predicts the ship trajectories based on particle swarm optimization(PSO)-LSTM model by using an improved PSO algorithm,and using automatic identification system(AIS) data as experimental data,after completing the preprocessing of the experimental data,analyzed the historical trajectory data to predict the future navigation path of the ship.The LSTM model and back propagation(BP) neural network model are compared and analyzed,and the PSO-LSTM model has the highest accuracy,with the smallest root mean square error and average absolute percentage error,which shows that the PSO-LSTM model has high accuracy and a certain application value,and can provide a certain decision support for ship traffic flow management and navigation safety.
[1]徐铁,蔡奉君,胡勤友,等.基于卡尔曼滤波算法船舶AIS轨迹估计研究[J].现代电子技术,2014,37(5):97-100,104.
[2]CHENG Q,WANG C.A method of trajectory prediction based on Kalman filtering algorithm and support vector machine algorithm[C]//Proceedings of 2017Chinese Intelligent Systems Conference:VolumeⅠ.Springer Singapore,2018:495-504.
[3]徐婷婷,柳晓鸣,杨鑫.基于BP神经网络的船舶航迹实时预测[J].大连海事大学学报,2012,38(1):9-11.
[4]PERERA L P,OLIVEIRA P,SOARES C G.System identification of vessel steering with unstructured un-certainties by persistent excitation maneuvers[J].IEEE Journal of Oceanic Engineering,2015,41(3):515-528.
[5]NGUYEN D D,LE VAN C,ALI M I.Vessel trajectory prediction using sequence-to-sequence models over spatial grid[C]//Proceedings of the 12th ACM International Conference on Distributed and Event-Based Systems,2018:258-261.
[6]CAPOBIANCO S,MILLEFIORI L M,FORTI N,et al.Deep learning methods for vessel trajectory prediction based on recurrent neural networks[J].IEEE Transactions on Aerospace and Electronic Systems,2021,57(6):4329-4346.
[7]刘文,胡琨林,李岩,等.移动目标轨迹预测方法研究综述[J].智能科学与技术学报,2021,3(2):149-160.
[8]仇功达,何明,杨杰,等.异常轨迹数据预警与预测关键技术综述[J].系统仿真学报,2017,29(11):2608-2617.
[9]杨博辰.基于AIS的船舶轨迹分析的研究与应用[D].成都:电子科技大学,2018.
[10]甄荣,金永兴,胡勤友,等.基于AIS信息和BP神经网络的船舶航行行为预测[J].中国航海,2017,40(2):6-10.
[11]张程烨,姚杰鹏,于晓涵.船舶AIS大数据应用与发展分析[J].舰船电子工程,2024,44(3):13-17.
[12]马良玉,耿妍竹,袁乃正,等.基于四分位与CFSFDP的风电机组异常数据清洗方法[J].电力科学与工程,2023,39(6):9-16.
[13]李超.粒子群优化算法改进策略及其应用研究[D].无锡:江南大学,2021.
[14]李万,冯芬玲,蒋琦玮.改进粒子群算法优化LSTM神经网络的铁路客运量预测[J].铁道科学与工程学报,2018.15(12):3274-3280.
[15]焦佳明,毕俊喜,葛新宇,等.基于优化LSTM模型的风力机叶片剩余使用寿命预测[J].太阳能学报,2024,45(6):495-502.
基本信息:
DOI:10.16426/j.cnki.jcdzdk.2025.02.008
中图分类号:TP18;U675.7;E91
引用信息:
[1]陈磊,李安然,罗寿超.基于PSO-LSTM模型的舰船轨迹预测研究[J].舰船电子对抗,2025,48(02):42-45.DOI:10.16426/j.cnki.jcdzdk.2025.02.008.
基金信息: